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If Ui is much less than X 2 -t" fr, then a and fl can be 
approximated as 

1 2 2 a = (X 2 + U,)l/2[1 + ~(Ui/U~)] ,  (A4a) 

fl = U/2(X 2 + W,) ~/2. (A4b) 

The reflected amplitude, R, can be solved by match- 
ing the boundary conditions. 

g = Oc - a - i 3 ) /Oc  + a + i3 ) .  (as) 
In the limit of small K or for X 2 < U,, the reflected 
amplitude is unity. For large X (corresponding to a 
large angle for the specular beam) it can be approxi- 
mated as 

R =  iU/4x  z, (A6) 

which only depends strongly on the imaginary part 
of the potential. The reflected intensity is therefore 

I =  u ~ / 1 6 x  4. (AT) 
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Abstract 

By a recent development of the maximum-entropy 
method (MEM) following Sakata & Sato [Acta 
Cryst. (1990), A46, 263-270], electron- (or nuclear-) 
density distributions have been obtained for crystal- 
line materials of simple structures from single-crystal 
or powder diffraction data. In order to obtain a ME 
density map, the ME equation is solved iteratively 
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under the zeroth-order single-pixel approximation 
(ZSPA) starting from the uniform density. The pur- 
pose of this paper is to examine the validity of the 
ZSPA by using a one-dimensional two-pixel model 
for which the exact solution can be analytically 
obtained. For this model, it is also possible to solve 
the ME equation numerically without ZSPA by 
the same iterative procedure as in the case of ZSPA. 
By comparison of these three solutions for a one- 
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dimensional two-pixel model, it is found that the 
solutions obtained iteratively both with and without 
ZSPA always converge to the exact solution so long 
as the value of the Lagrange undetermined multi- 
plier, ,~, is chosen to be sufficiently small. This means 
the ZSPA solution does not depend on ,~ when the 
convergence is attained. When ,~ exceeds a critical 
value, iteration with ZSPA gives oscillatory 
divergence but iteration without ZSPA converges to 
a different value from the exact solution. It is con- 
eluded that the introduction of ZSPA does not cause 
any serious problem in the solution of the ME 
equation, when a sufficiently small a value is used in 
the ME analysis. 

1. Introduction 

Recently, a new method has been developed in the 
field of accurate structure analysis to obtain electron- 
(or nuclear-) density distributions from X-ray (or 
neutron) diffraction data. It utilizes the maximum- 
entropy method (MEM) in order to restore the 
electron (or nuclear) densities of crystalline materials 
from observed structure-factor data (Sakata & Sato, 
1990). The superiority of the ME density map over 
the conventional Fourier map is very clearly shown 
in some cases (Sakata & Sato, 1990; Sakata, Moil, 
Kumazawa, Takata & Toraya, 1990; Sakata, Uno, 
Takata & Howard, 1993). The MEM can be applied 
in the case where only a limited number of observed 
structure factors are available, such as in a powder 
diffraction experiment. The number of examples in 
which the ME analysis has been successfully applied 
to the accurate determination of electron (or nuclear) 
densities is now rapidly increasing. 

The purpose of these studies is to restore, in the 
form of electron- or nuclear-density distributions, as 
much as possible of the structural information 
included in accurately determined structure factors 
of simple materials. This is surely one of the frontiers 
of accurate structure analysis. For such a purpose, 
the ME equation, which is mathematically a tran- 
scendental equation, has so far been solved by an 
iterative method under the following conditions: (1) 
satisfaction of the symmetry requirements of the 
crystals; (2) conservation of the total number of 
electrons (or nuclei) in a unit cell; (3) use of the 
zeroth-order single-pixel approximation (ZSPA) in 
order to solve the MEM equation. The iteration 
starts from the uniform density because it corre- 
sponds to the state of maximum entropy when there 
is no structural information. In this way, any preju- 
dice in choosing the initial density for the iteration 
can be excluded, which has essential importance for 
the problem mentioned above. When the MEM is 
applied to some other purposes, such as the phase 
problem (e.g. Bricogne & Gilmore, 1990; Gilmore, 

Bricogne & Bannister, 1990), the procedure described 
above may not be appropriate. 

The first and second conditions are necessary to 
make the ME density map consistent with the crys- 
tallographic knowledge. It is very reasonable to con- 
sider that these conditions must be compulsorily 
satisfied. The third condition is, however, helpful for 
mathematical reasons. For this purpose, Wilkins, 
Varghese & Lehmann (1983) introduced the single- 
pixel approximation. On the other hand, we employ 
the ZSPA and thus the ME equation becomes a 
simple linear equation and solvable in an iterafive 
way. The results of the ME analysis so far obtained 
under the ZSPA seem to be physically and chemi- 
cally acceptable as electron (or nuclear) densities of 
materials; for example, the nature of chemical bond- 
ing of the specimen, such as covalency, is reproduced 
in the form of electron densities. Hence, the validity 
of the ZSPA has been taken as granted without any 
theoretical considerations. It is not known what kind 
of influence failure of the ZSPA would have on the 
solution of the ME equation. It is therefore very 
important to examine the validity and limitation of 
the ZSPA on a theoretical basis, not only in order to 
establish the ME analysis in crystallography but also 
for basic understanding of the MEM. 

In this paper, an extremely simple case of a one- 
dimensional two-pixel model is considered. This 
model has no reality as a practical crystal. From a 
theoretical viewpoint, however, this is a very interest- 
ing and valuable model. First of all, the exact solu- 
tion of the ME equation can be analytically derived; 
secondly, the iterative solution can be obtained by 
calculating the Lagrangian numerically without 
using the ZSPA. Therefore, this model is most suit- 
able for the purpose of the present paper, which is to 
examine the validity of the ZSPA when it is used to 
calculate the ME density map. 

2. Theory 

The theoretical background of ME analysis is briefly 
mentioned in order to explain the ZSPA. The present 
ME formalism is essentially based on the work of 
Collins (1982), in which the ME equation was 
derived under the approximation that neglects a term 
of reciprocals of the squared density distribution. 
Sakata, Uno, Takata & Mori (1992) later showed 
that the same equation can be derived without intro- 
ducing the approximation by taking the differential 
for the maximum condition of the Lagrangian with 
respect to the normalized densities instead of the real 
densities. In order to avoid unnecessary complexity 
in deriving the ME equation, the theory is given here 
for the X-ray case. It is fairly straightforward to 
rewrite the equations to suit the neutron diffraction 
case if there is no negative-scattering-density prob- 
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lem. The negative-scattering-density problem has 
been solved by Sakata, Uno, Takata & Howard 
(1993). 

The information-theoretic entropy is written as 
N--1 

S = -  S'. pklOg(Pk/rk), (1) 
k = 0  

where pk and ~'k are the normalized density and 
normalized prior density, respectively, at the position 
rk and N is the total number of pixels in the unit cell. 
The structure-factor and total-charge constraint 
functions, C and D, are written as 

M 

C =  (l/M) Y~ (1/~r~)lFcal¢(hj) - Fobs(h:)l 2 (2) 
j=l  

and 
N - I  

D = 2 ok, (3) 
k = 0  

respectively. In (2), M is the number of known 
phased structure factors, F o b s ( h i )  is the observed 
structure factor for reflection hi, ~rj is the standard 
deviation of F o b s 0 1 j )  and Fcal~(hj) is the calculated 
structure factor given as 

N--1 

Fca~(hj) = V Z QkeXp(Zlrihj'rk), (4) 
k=O 

where V is the unit-cell volume and Qk is the number 
of electrons at the position rk. Qk is defined by 
(Q/V)pk and Q is the total number of electrons. 

When the constraints are satisfied, these functions 
become 1, because C= 1 is the expected value of the 
x2-type distribution and D = 1 shows the total charge 
of normalized density. Using the Lagrange method 
of undetermined multipliers, we have the Lagrangian 
a s  

H(p;A,/x) = S -  A[C(p)- 1 ] - / z [D(p) -  1], (5) 

where A and /x are the Lagrange undetermined 
multipliers for the structural and total-charge con- 
straints, respectively. By setting 

and 

OH/Opk = - -  1 o g p k -  1 + log "rk-- IZ - A(OC/Opk) = O, 

(6a) 
N=I 

bH/OI.L = Z P k -  1 = 0 (6b) 
k = 0  

OH/OA = C -  1 = 0 (6c) 

for the maximum condition of the Lagrangian, we 
have the ME equations as 

= 1"kexp ~ rk, exp - A  (7) 
AOPk] k' =o Opk' 

Pk 

from (6a) and (6b) and 

M 

(l/M) Z (1/~r~)[Fc~lc(hj)-Fobs(hj)l 2 -  1- '0  (8) 
j = l  

from (6c). If the normalized densities in (6) are used 
for the maximum condition, the ME equation can be 
derived without any approximation (Sakata, Uno, 
Takata & Moil, 1992). 

A problem in obtaining the ME density map is 
that the ME equation cannot be solved analytically 
in practical cases, because pk is included on both 
sides of (7). One way to solve the ME equation is to 
introduce an approximation. Wilkins, Varghese & 
Lehmann (1983) introduced the single-pixel approxi- 
mation. It can be described in two steps. First, the 
derivative term of the ME equation is expanded in a 
Taylor series, 

OPk --= ~ pk= rk k= k' OPkOPk ' Ipk= rk" 

(9) 

Second, only the k - k '  term is included in the sum- 
mation of the second term of (9). Then, the approxi- 
mated nonlinear single-pixel equation is solved by 
Newton's method. 

The additional assumption of the ZSPA is to 
ignore all of the second term of (9), which is equiva- 
lent to replacing Pk by rk in the calculation of the 
structure factor, i.e. 

N--1  

F~a,c(hj) = V Z Tkexp(2rcihy'rk), (10) 
k = 0  

where Tk is defined by (Q/V)~'k. By (10), the right- 
hand side of (7) becomes independent of Pk. There- 
fore, the approximated ME equation can be solved 
without nonlinearity, although an iteration must still 
be carried out until the constraint function, (8), is 
satisfied. In the calculation, the initial density distri- 
bution is chosen as uniform, which corresponds to 
the maximum-entropy state when there is no struc- 
tural constraint. The value of A is chosen sufficiently 
smaller than the exact value. The reason for this is 
given in §5. 

3. One-dimensional two-pixel model 

In this section, a one-dimensional two-pixel model is 
described. An example of the model is shown in Fig. 
1. As is seen from the figure, this system always has a 
center-of-symmetry operation and hence the struc- 
ture factors are always real. Since only two pixels 
exist, only two structure factors are necessary to 
define the complete system. In the present case, we 
may choose the total charge, Foa~(0), and the first- 
order Fourier coefficient, F~al~(1) written as 

Fca,c(O)=po+pl and Fca,~(1)=po-p, ,  (11) 
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respectively. In order to simplify the expression, it is 
assumed that Q = 1 and V= 1. 

For the one-dimensional two-pixel model, (7) and 
(8) are written as follows: 

Po = ro exp ( * 2AIo')/[ro exp ( * 2A/tr) 

@ 7" 1 exp(__. 2a/g)], 
Pl = ~'] exp ( _ 2A/tr)/[ro exp ( -w- 2a/~r) 

+ ~'1 exp ( ___ 2A/t~)] (12) 

and 

[ ( P o - - p l - - F o b s ) 2 / o ' 2 ]  - 1 = 0 .  ( 1 3 )  

By substituting (12) into (13), we obtain the exact 
solutions as solution A, 

AA = ((r/2) log [rl(1 + Fobs-- ~r)/ro(1 -- Fobs + (r)] ]/2, 

po=(1.+Fobs_O.)/2, pl=.(l_Fobs_hO.)/2 ' (14) 

and solution B, 

As = ((r/2) log [~'o(1 - Fobs- o')/~'~(1 + Fobs + (r)] w2, 

po=(l+Fobs+O.)/2, pl=(l_Fobs_O.)/2" (15) 

Since (13) is a second-order formula with respect to 
Pk, this model has two analytical solutions. One 
corresponds to the maximum and the other to the 
minimum of H. Which solution yields the maximum 
depends on the magnitude of the prior density and 
the sign of Fobs. If  we assume that prior densities are 
uniform and Fobs has a positive value, then solution 
A becomes the maximum and solution B the 
minimum. 

A relation between the exact solutions and the 
related functions used to derive the ME equations is 
shown in Fig. 2 plotted against po. The selected 
functions are the entropy function, S, the constraint  
function multiplied by - A ,  - A C ,  and the sum- 
marion of these functions, H' = S - A C .  In the 
present case, the exact solutions appear on the right- 
hand side of the prior density. If  the prior density is 
chosen on the right-hand side of the exact solutions, 
the maximum and the minimum will be exchanged. 
In all cases, the maximum-entropy solution locates 
nearer to the prior density. The function S has a 
single maximum, which occurs at the prior density. 
The function - AC also has a single maximum, at the 

[ x ~  ~ ~:,~.: ", ~ 

Unit 

Fig. 1. A schematic picture of a one-dimensional two-pixel crystal 
model. 

midpoint of the exact solutions. Therefore, the func- 
tion H'  becomes a single convex function. In general, 
it can be shown that H '  has a single maximum, since 
a unique solution should be derived from OH'/Opk = 
0. The maximum of H '  depends on the value of A. If  
the exact A value, AA, is substituted into this func- 
tion, the maximum appears on the exact solution A 
in this figure. In a realistic case, the exact A value is 
never known. The real problem that arises is how to 
solve the ME equations without knowing the exact A 
value. 

4. Computer simulation 

With the assumption that F o b  s = 0.5 and or = 0.1 in 
the one-dimensional two-pixel model, a computer 
simulation was carded out to solve the ME equation 
without knowledge of the exact A value. The analyti- 
cal solution for these values is given by (14) as AA = 
0.021, Po = 0.7 and p] = 0.3. In the simulation, (7) is 
iteratively solved in two different ways. One way is 
to ignore the ZSPA in order to solve (7), which is 
equivalent to ignoring the second term of (9). This 
procedure is called the ZSPA calculation. In the 
present simple case, (7) can also be solved by a 
similar kind of iteration including the second term of 
(9) even when the exact A value is not known. This is 
the alternative to the ZSPA and is called the numeri- 
cal calculation in this paper. In the end, there will be 
three solutions, the analytical, ZSPA and numerical 
solutions, for the present one-dimensional two-pixel 
model. 

In order to examine the calculation of each cycle 
of the iteration, both the ZSPA and the numerical 
solution are shown in Fig. 3 for three different A 
values after the first cycle of the iteration. The solid 

0.0 I I / i \ I -P- - t .  I 

! 

= -0,I 

~ -0.2 - 

o /  i1, ,.,1 //// 

"~ -0.', 
,,c 

I -  / I f /  
-0., '~ 

0.0 0.2 0.4 0.6 0.8 1.0 
Electron D e n s i t y  of  P ixe l  0 Po 

Fig. 2. The entropy function, S, the constraint function multiplied 
by - A, - AC, and the summation of these functions, H' = S - 
AC, as functions of Po. The prior density and the exact solutions 
A and B are also shown. 
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line is the absolute value of H' as a function of P0, 
the circles are the numerical solution and the squares 
are the ZSPA calculation after the first iteration. 
Since the numerical calculation does not ignore the 
second term of (9), the obtained value appears on the 
maximum of H'. The iterative calculations shown by 
circles and squares in the figure depend very much 
on A. As A becomes bigger, both of the iterative 
calculations become much more different from the 
prior density ~'o. The discrepancy between the ZSPA 
and numerical calculations also depends on a. As A 
becomes bigger, the discrepancy also becomes bigger. 
At this stage, it cannot be said whether the iteration 
using that specific ,~ value converges or diverges. 

The difference between the ZSPA and numerical 
calculations is in the consideration of the second 
term of (9). The contribution to a part of the second- 
order derivatives for this term is given by 

M 
02C/OpkOPk '°c Z (1/trE)exp[2zcihj(rk +rk,)]. (16)  

j = l  

Since this term is independent of Pk and ,~, it can be 
treated as a constant value. The second term of (9) 
might be regarded as proportional to P k -  7"k. This 
explains the ,~ dependence of the discrepancy 
between the ZSPA and the numerical calculations. It 
should be emphasized for the justification of the 
ZSPA that it is possible to make the discrepancy 
insignificantly small by choosing a sufficiently small 
A value. 

The whole iteration process to solve the ME equa- 
tion is shown in Fig. 4 for both the ZSPA and 
numerical calculation cases. In the case where A = 
0.001, both the ZSPA and numerical solutions con- 
verged at the exact solution, as shown in Fig. 4(a). 
The difference appeared only in the number of itera- 
tions required to reach the exact solution. It took 16 

1 0 ° I I 

-2 o Numerical 
10-: [] ZSPA 

),°-' i 
~ ~ -3 

=I-10 -2 
~ 0-4 

) Prior Density "co I 
0"3 I 1 I I 

0.4 0.5 0.6 0.7 0.8 
Electron Density of Pixel 0 P0 

Fig. 3. The ZSPA and the numerical solutions after the first 
iteration with respect to three different ,t values. 

10 o ~ ~ i  i A m 

"~10 ~ l 

1 0  .2 

10 .3 
0.0 0.2 0.4 0.6 0.8 1.0 

Electron Density of Pixel 0 Po 
(a) 
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100J ' A' 

fir 10 .2 F ~, = 0.003 

J 10"31 m i I I I 
0.0 0.2 0.4 0.6 0.8 1.0 

Electron Density of Pixel 0 Po 
(b) 

1 0 i 
! ! ! ! ~ I 

"Co A i 

I0 ° - 

_ i ~ [] 

 -003 ) i 
10 1 I ~ - 

' ) 
I I l I - I 

0.0 0.2 0.4 0.6 0.8 .0 
Electron Density of Pixel 0 Po 

(c) 
Fig. 4. The ZSPA and the numerical solutions up to convergence 

or divergence for (a) ,~ = 0.001, (b) A = 0.003 and (c) ,~ --- 0.03. 
The circles represent the numerical solution and the squares the 
ZSPA solution. 
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and 19 cycles for the ZSPA and numerical cases, 
respectively. When A = 0.003, the situation is very 
similar to the previous case shown in Fig. 4(b). Both 
solutions, ZSPA and numerical, converged at the 
exact solution. The number of iterations was five and 
four for the ZSPA and numerical cases, respectively, 
much less than in the previous case. In the case 
where A = 0.03, shown in Fig. 4(c), the situation 
becomes entirely different from the previous two 
cases. In this case, the A value exceeds the exact 
value, 0.021. The numerical calculation converges 
after only one iteration but to a different value from 
the exact solution, because the ,~ value is not the 
exact value. In the ZSPA case, the iterative solution 
shows oscillatory behavior and eventually diverges. 
Therefore, the ME equation cannot be solved by the 
ZSPA in such a case. This is due to the big difference 
between the ZSPA and the numerical calculation for 
such a big ,t value. From the practical viewpoint, the 
case with such a big ,~ value is not important because 
a smaller ,~ can be chosen without any difficulty if 
there is any doubt about the ,t value. It may be 
emphasized that, whenever the ZSPA converges, it 
converges at the exact solution. This may be an 
advantage of ZSPA from the practical viewpoint. 

5. Choosing the value of the Lagrange undetermined 
multiplier 

By the computer simulation for the one-dimensional 
two-pixel model where the exact solution is known, it 
is understood that the ME equation can be solved by 
the ZSPA without knowledge of the exact value of A. 
There remains the problem of how to choose an 
appropriate ,t that leads to fast and stable conver- 
gence. From the practical viewpoint, this is not really 
a problem apart from with respect to computation 
time, because choosing the smaller value is always 
safer when solving the ME equation by the ZSPA. It 
is. still interesting to discuss how to choose the most 
appropriate ,t that gives the fastest convergence. 

100 

o 8O 

- -  60 
+5 

-~ 40 
Z 
~ 20 e-- 
I--- 

0 
104 

. . . . . . .  i . . . . . . . .  " i . . . . .  "" 

' ~  Oscillation 
Regionl - 

\ Convergence , i D vergence 
~ Region i Region 

. . . . . .  I t |  t " + ~ 1  I I I I I I  

. . . . .  • 

10 .3 10 .2 10"1 
A value 

Fig. 5. The numbers of iterations required to attain convergence 
when ,~ is varied. 

For that purpose, the ME equation for the one- 
dimensional two-pixel crystal model is solved with 
various ,~ values. In Fig. 5, the number of iterations 
required to reach convergence by the ZSPA is plot- 
ted as a function of A. From the figure, the regions of 

values may be divided into three. When ,l is 
smaller than 0.01, the convergence was attained by 
monotonic decreasing of the constraint function. In 
this region, the number of iterations decreases as ,~ 
increases. As A exceeds 0.01, the number of iterations 
increases again until a reaches 0.029. In this region, 
the constraint function does not monotonically 
decrease and show oscillatory behavior. Once ,~ 
exceeds a critical value, i.e. 0.029 in this case, the 
ZSPA does not give convergence. The fastest conver- 
gence was obtained at the boundary between mono- 
tonic and oscillatory decreasing of the constraint 
function. This value is less than the exact ~ value. It 
appears here again that the ZSPA solution converges 
at the exact solution of the ME equation whenever it 
converges. Though the number of iterations changes 
depending on ,~, the ZSPA solution is independent of 
the choice of ,~. This situation is exactly same as in 
the radio- and X-ray-astronomy fields (Gull & 
Daniel, 1978) and the practical three-dimensional 
electron-density case (Sakata, Mori, Kumazawa, 
Takata & Toraya, 1990). The solution of each cycle 
depends on ,~, since the solution is derived from (7). 
But, when the convergence is attained, the final 
solution does not depend on A. As the iteration 
cycles progress near the convergence, the constraint 
functions decrease very slightly. The difference of Pk 
and rk also becomes very small. In such a case, the 
solution also does not depend on ,~, even if a is 
increased. 

6. Concluding remarks 

The validity of the ZSPA was examined by solving 
the ME equation for a one-dimensional two-pixel 
model, for which the exact solution is analytically 
derived. As a simulation of a practical case, an 
attempt was made to solve the equation iteratively by 
the ZSPA without knowledge of the exact value of 
the Lagrange undetermined multiplier ,~. It is not 
guaranteed that the iteration always converges. 
Whether it converges or diverges depends on ,~. 
When A exceeds a critical value, it always diverges. If 
A is smaller than the critical value, it converges. 
Whenever the convergence was attained, the ZSPA 
solution was always equal to the exact solution of a 
one-dimensional two-pixel model. Since the ZSPA 
solution does not depend on A, there is no need to 
know the critical value. It is very easy to choose an 
appropriate A that gives a stable convergence. From 
the practical viewpoint, the introduction of the 
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ZSPA presents no problems for the solution of the 
ME equation. The influence on the ME density map 
of the introduction of the ZSPA is insignificant. 
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Abstract 

Transmission electron microscopy shows that there is 
an ordered modulated structure in orthoclase 
(Or84.6Ab13.1An2.3) (Or = orthoclase, Ab = albite, 
An=anorthite) of an augite monzonite from 
Wulian, Shandong Province, Northern China. The 
modulated orthoclase is composed of a series of 
triclinic (010) layer domains with C1 symmetry. Each 
domain has a thickness of 4d~10 and the domains are 
periodically arranged along the b axis. The modula- 
tion period along the b axis is thus 104 A (= 8do10). 
The relationship between the extended unit-cell para- 
meters of the modulated structure (supercell) and the 
triclinic subcell parameters is: asup "" asub; bsup = 8dolo 
-----8bsub; Csup----" Csub; flsup ~"/~sub. The probable space 
group of the commensurately modulated orthoclase 
is Pm. The modulated structure probably forms 
during the phase transition from sanidine (C2/m 
symmetry) to microcline (C1 symmetry) through the 
segregation of A1 atoms from T2 sites into T~(o) and 
Tl(m) sites, respectively, in neighboring domains, 
which are in the albite-twin relationship. The order- 
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ing of A1 atoms in the tetrahedral sites during the 
phase transition results in a sinusoidal deviation of 
the crystal structure from monoclinic symmetry. The 
A1-Si distribution near the domain boundary posi- 
tions is likely to be relatively disordered. 

1. Introduction 

In structure, orthoclase [(K,Na)A1Si308] can be con- 
sidered to be a heterogeneous crystal composed of 
domains with triclinic symmetry. The twins are so 
fine in scale that experiments using light or X-rays 
indicate only an average monoclinic (C2/m) average 
structure, rather than the local triclinic (Ci) sym- 
metry of the individual domains (Smith, 1974; Laves, 
1950; Goldsmith & Laves, 1954). Orthoclase is 
generally considered to be a metastable phase 
between sanidine and microcline and represents a 
stage in the ordering of aluminium in the tetrahedral 
sites of potassium feldspar (Smith, 1974; Laves, 
1950; Goldsmith & Laves, 1954; Ribbe, 1983). The 
ordering of aluminium and silicon in the tetrahedron 
sites, exsolution microstructures and tweed textures 
in alkali feldspars have been thoroughly studied both 
theoretically and experimentally (Ribbe, 1983; 
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